Retrospective Analysis of NIST Standard Reference Material 1450, Fibrous Glass Board, for Thermal Insulation Measurements
نویسندگان
چکیده
Thermal conductivity data acquired previously for the establishment of Standard Reference Material (SRM) 1450, Fibrous Glass Board, as well as subsequent renewals 1450a, 1450b, 1450c, and 1450d, are re-analyzed collectively and as individual data sets. Additional data sets for proto-1450 material lots are also included in the analysis. The data cover 36 years of activity by the National Institute of Standards and Technology (NIST) in developing and providing thermal insulation SRMs, specifically high-density molded fibrous-glass board, to the public. Collectively, the data sets cover two nominal thicknesses of 13 mm and 25 mm, bulk densities from 60 kg·m(-3) to 180 kg·m(-3), and mean temperatures from 100 K to 340 K. The analysis repetitively fits six models to the individual data sets. The most general form of the nested set of multilinear models used is given in the following equation: [Formula: see text]where λ(ρ,T) is the predicted thermal conductivity (W·m(-1)·K(-1)), ρ is the bulk density (kg·m(-3)), T is the mean temperature (K) and ai (for i = 1, 2, … 6) are the regression coefficients. The least squares fit results for each model across all data sets are analyzed using both graphical and analytic techniques. The prevailing generic model for the majority of data sets is the bilinear model in ρ and T. [Formula: see text] One data set supports the inclusion of a cubic temperature term and two data sets with low-temperature data support the inclusion of an exponential term in T to improve the model predictions. Physical interpretations of the model function terms are described. Recommendations for future renewals of SRM 1450 are provided. An Addendum provides historical background on the origin of this SRM and the influence of the SRM on external measurement programs.
منابع مشابه
Metrology Institute Comparison of Guarded - Hot - Plate Apparatus
Two national metrology institutes have conducted an international interlaboratory comparison on thermal conductivity for two thermal insulation reference materials. The Laboratoire national de métrologie et d’essais (LNE), France, and the National Institute of Standards and Technology (NIST), United States, present measurements obtained by the guarded-hot-plate method. The study involved two ma...
متن کاملAssessment of Uncertainties for the NIST 1016 mm Guarded-Hot-Plate Apparatus: Extended Analysis for Low-Density Fibrous-Glass Thermal Insulation
An assessment of uncertainties for the National Institute of Standards and Technology (NIST) 1016 mm Guarded-Hot-Plate apparatus is presented. The uncertainties are reported in a format consistent with current NIST policy on the expression of measurement uncertainty. The report describes a procedure for determination of component uncertainties for thermal conductivity and thermal resistance for...
متن کاملDevelopment of the Measurement Apparatus for the Effective Thermal Conductivity of Core Material
A measurement apparatus is designed and fabricated to measure the effective thermal conductivity (keff) of a VIP (vacuum insulation panel) core specimen under various vacuum states and external loads. The apparatus consists of part for measuring keff, and parts for controlling external load and vacuum condition. Uncertainty of the apparatus is validated by measuring the standard reference mater...
متن کاملTemperature stabilization system with millikelvin gradients for refractometry
Refractometry of air is a central problem for interferometer-based dimensional measurements. Refractometry at the 10−9 level is only valid if air temperature gradients are controlled at the millikelvin (mK) level. Very precise tests of second-generation National Institute of Standards and Technology (NIST) refractometers involve comparing two instruments (two optical cavities made from ultralow...
متن کاملApplication of Nanofiber Technology to Nonwoven Thermal Insulation
Nanofiber technology (fiber diameter less than 1 micrometer) is under development for future Army lightweight protective clothing systems. Nanofiber applications for ballistic and chemical/biological protection are being actively investigated, but the thermal properties of nanofibers and their potential protection against cold environments are relatively unknown. Previous studies have shown tha...
متن کامل